
1.  INTRODUCTION

Localization of deformation refers to the

emergence of narrow regions in a structure

where all further deformation tends to

localize, in spite of the fact that the external

actions continue to follow a monotonic

loading program. The remaining parts of the

structure usually unload and behave in an

almost rigid manner. Indeed such localization

is almost certain to occur if strain softening

or non-associated behavior exists, though it

can be triggered even when ideal plasticity is

assumed. The phenomenon has a detrimental

effect on the integrity of the structure and

often acts as a direct precursor to structural

failure. It is observed for a wide range of

materials, including rocks, concrete, soils,

metals, alloys and polymers, although the

scale of localization phenomena in the

various materials may differ by some orders

of magnitude: the band width is typically less

than a millimeter in metals and several

meters for crystal faults in rocks.

From a mechanical point of view the driving

forces behind localization phenomena are

material instabilities, that is, the constitutive

relationship violates the stability criterion

that the inner product of the stress rate and

the strain rate is positive. Obviously, this

inner product becomes negative when, in a

uniaxial tension or compression test, the

slope of the homogenized axial stress - axial

strain curve is negative. We call this

phenomenon 'strain softening'. By using the

terminology 'homogenized' we refer to the

fact that initial flaws and boundary

conditions necessarily induce a non-

homogeneous stress state in a specimen

during testing. In particular, during

progressive failure of the specimen these

flaws and local stress concentrations will

cause strongly inhomogeneous deformations

of the specimen. The procedure that is

normally utilized to derive stress-strain
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relations, namely dividing the force by the

virgin load-carrying area and dividing the

displacement of the end of the specimen by

the original length so as to obtain stress and

strain respectively then no longer reflects

what happens at a micro-level and loses

physical significance.

In many physical phenomena, whose

behavior is described by differential

equations in a well posed manner, abrupt

discontinuities in the main solution variables

may develop. Such phenomena are

frequently noted in solid mechanics where

plastic failure or fracture can localize in

surfaces on which discontinuities of stresses

and displacements occur. This phenomenon

was observed as early as 1972 in an early

work describing a general approach to finite

element solution of plasticity problems by

Nayak and Zienkiewicz [1]. They

experienced that even with a very coarse

finite element discretization, quite narrow

plastic zones occur under a punch when

plastic softening is assumed. On the contrary,

when the material is hardening the plasticity

zone extends practically throughout the

whole domain. Though not noted at the time,

it became clear some years later, that material

softening of the general form assumed by

Nayak and Zienkiewicz, will always lead to

localization with an abrupt discontinuity. 

Analysis of strain localization has been an

important subject in the attempt to improve

the numerical simulation of structure

failures. The presence of strain-softening in

the constitutive laws brings great difficulties

to classical (local) continuum theories [2–4].

Although it is possible to include

discontinuities in the analysis (by use of

special finite elements) this is complex as the

position of such discontinuities has to be

assumed a priori. Early efforts were devoted

to obtaining failure surfaces and their

associated safety factors. Later, finite

element techniques allowed a more precise

analysis of the stress and strain fields, using

more sophisticated material models.

However, the problem is no longer

mathematically well posed after the onset of

localization in strain-softening materials,

because local continuum allows for an

infinitely small band width in shear or in

front of a crack tip [5]. At the numerical

level, these difficulties translate in mesh

dependence of solutions.

Various techniques have been implemented

to provide a physically acceptable solution.

Some impose restrictions on the constitutive

moduli in the post-localization regime, while

others artificially restrict the size of finite

element by comparison to the localization

zone. The former is based on enriching the

continuum with non-conventional

constitutive relations in such way that an

internal or characteristic length scale is

introduced. Bifurcation analysis techniques

based on the early work of Thomas [6] and

Rice [7] were adopted by many researchers

to determine the shear band localization (de

Borst [8], Runneson et al. [9], Pijaudier-

Cabot and Benallal [10] and Simo et al [11]).

Non-local theories are the Cosserat

continuum [12, 13], the higher gradient

theories (Triantafyllidis and Ainfantis [14]),

and the integral theory or the gradient theory

(de Borst and Mulhlaus [15] and Muhlhaus

and Ainfantis [16]). The later is based on a

mesh refinement technique using the normal,

continuous, approximations to all the

variables (Pastor et al. [17], Belytschko and

Tabbara [18], Zienkiewicz et al. [19], Lewis

and Khoei [20] and Khoei and Lewis [21]).

The aim of this research is to capture the

localization phenomena by restriction on the

material property matrix in the post-

localization regime based on the Cosserat

continuum theory.
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The Cosserat continuum theory, first

proposed by Cosserat brothers in 1909 [22],

has attracted many attentions in last two

decades. The first implementation of the

theory into a finite element code was made

by de Borst [23] and de Borst and his co-

workers [13, 15, 24]. This theory has two

main characteristics. Firstly, the rotational

degree-of-freedom is taken into account in

addition to translation degrees-of-freedom.

In fact, the introduction of rotational degree-

of-freedom leads to the existence of moment

stresses (moment per area) in addition to the

stresses of classic continuum. Secondly, the

internal length scales is introduced in the

field of constitutive equation. This parameter,

which plays the most important role in

controlling shear bandwidth, relates couple

stresses to micro-curvature. Tejchman and

Wu [25] proposed the Cosserat continuum

model as the regularization approach to

analyze strain localization problems. An

application of adaptive strategy was

presented by Peric et al. [26] in numerical

simulation of strain localization using

Cosserat continua. Iordache and Willam [27]

proposed the micropolar Cosserat continua to

examine the regularization properties of

discontinuous bifurcation problems. The

Cosserat theory was applied to the

localization behavior of associated and non-

associated materials by Carmer et al. [28]. 

The Cosserat theory was implemented not

only to predict the phenomena of

localization, but also to simulate the variety

of other problems ranging from the

mechanics of rocks to powder forming

processes. A microstructure plastic

continuum was developed by Chambon et al.

[29] based on the local second gradient

theory in strain localization of geomaterials.

The theory was proposed by Forest et al. [30]

to study the localization patterns at a crack

tip in generalized single crystal plasticity.

Sulem and Cerrolaza [31] applied the

Cosserat theory to study the scale effect in

measuring of strength parameters of rocks in

indentation test. A study of localized

deformation pattern in granular media was

performed by Nubel and Huang [32]. A

pressure-dependent elasto-plastic Cosserat

continuum was presented by Li and Tang

[33] in modeling strain localization using a

consistent return mapping algorithm. A finite

strain elasto-plasticity Cosserat formulation

was presented by Neff [34] based on the

multiplicative decomposition of deformation

gradient, following the earlier work of

Sievert et al. [35]. The Cosserat continuum

theory was employed by Mori [36] to powder

forming processes due to microscopic

rotations of powder particles. 

The main objective of present paper is to

extend the 2D Cosserat theory presented by

Khoei et al. [37, 38] for strain softening

plasticity to three-dimensional modeling of

shear band localization. A numerical solution

is developed based on the higher order

continuum model in prediction of

localization phenomena. The fundamental

relations in Cosserat continuum are presented

for 3D solid problems. The governing

equations are regularized by adding the

rotational degrees-of-freedom to

conventional degrees-of-freedom and an

internal length scale in the field of

constitutive equation. Generally, due to path

dependency of the solution in nonlinear

analysis, the loading is applied in an

incremental manner with an iterative

linearization, using the Newton-Raphson

method in each increment.

2.  COSSERAT CONTINUUM THEORY

In Cosserat theory, the independent rotation

vector (micro-rotation)  is contributed
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through the governing equations, which is

distinct from the macro-rotation introduced

by the gradient of displacement vector. These

micro-rotations are included as a part of

degree of freedom for a point aside of

displacement vector .  Thus, the strain

components in Cosserat continuum can be

defined as

(1)

where eijk is the permutation symbol. Due to

contribution of micro-rotations, the Cosserat

strain tensor is no longer symmetric.

However, the substitution of micro-rotations

with macro-rotations results in symmetry

tensor which is not the subject of this study.

In above relation, kij is the torsion-curvature,

called wryness tensor, and is conjugated to

the couple stress tensor mij . In Figure 1, two

different types of couple-stresses are

presented which can be interpreted as torsion

and bending couples acting on the surface.

These two couple stresses have different

characteristic lengths which can be related to

the curvature tensor through the elasticity

tensor.

In Cosserat theory, it is assumed that the

interaction between two particles of the body

occurs through the means of traction vector

tids and the means of moment vector mids .

The surface forces and couples can be then

expressed as follows

(2)

Applying the Green’s theorem with respect to

body forces and body couples, the

equilibrium governing equations in Cosserat

continuum can be written as [39] 

(3)

where fi and ci denote the body force and

body couple, respectively, and r and I
indicate the mass density and rotational

inertia. The second equilibrium equation

presents the moment of momentum, and due

to this equation the symmetry of stress tensor

is no longer available, i.e. sijKsji , that can

be complied with its conjugate in strain space

eij .

2.1.  Three-Dimensional Cosserat Elasticity 

In order to obtain an appropriate elastic

modulus for isotropic Cosserat medium, two
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assumptions need to be taken into account.

First, consider that the stress and couple-

stress components do not interact together so

we will have two distinct equations, each of

them dealing with either stresses or couple-

stresses. In this case, the governing equation

for stress components is slightly different

from the classical continuum because of lack

symmetry in stress tensor, as mentioned

earlier. Thus, the fourth order tensor that

relates the stress to strain tensor has three

constants, one more than its relevant classical

theory, in which this additional parameter is

called Gc . Secondly, in order to relate the

couple-stresses to curvatures we assume no

interaction between bending and torsion

couple stresses in constitutive equation, thus

the number of independent constants can be

reduced to two parameters. 

Combining the stress and couple-stress

vectors                  to a single generalized

vector    , with        and m denoting by

(4) 

And combining the strain and curvature

vectors to a single generalized strain vector

as                   , where       and k are

(5)

Hence, the constitutive relation for an elastic

Cosserat medium can be defined as s=Dee ,

where De is the linear elastic operator

defined as  

(6)

where

(7)

where ll denotes the internal length parameter

for both torsion and bending couple-stresses,

which indicates physically the width of shear

bands in localized region.  llt can be

determined by the torsion of a circular

cylindrical rod, and the bending of a circular

cylindrical rod can be used for determination

of llb . Taking the internal length parameters

into the curvature vector (5) to make all

components dimensionless, the new forms of

m and k can be rewritten as 

(8)

2.2.  Three-Dimensional Cosserat Elasto-

plasticity 

In order to introduce the internal length scale

into the set of constitutive equations, the

classical model of pressure-independent

J2-elasto-plasticity is generalized by

introducing additional degrees of freedom

within the Cosserat continuum. Hence, an

extension of classical J2-flow theory in

Cosserat continuum is defined as [24]

(9)

where sij is the deviatoric stress tensor, ll is

either llt or llb, and a1,a2 and a3 are the

material parameters. In the absence of

couple-stresses, i.e. mij=0 and sij=sji ,

equation (9) reduces to 
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(10)

in which we need to enforce a1+a2=1/2 in

order to obtain the classical expression for J2.

Thus, the yield criteria can be presented in a

similar manner to classical continuum as

(11)

where      denotes the yield stress, which is a

function of the effective plastic strain      .

Equation (9) can be rewritten in a matrix

format as

(12)

where

(13)

where

(14)

As in classical plasticity, the plastic strain is

related to yield criteria as follow

(15)

where l is the plastic multiplier. The

effective plastic strain, defined in equation

(15), can be evaluated by

(16)

3.  COMPUTATIONAL ALGORITHM 

The algorithm presented here is completely

similar to classical continuum algorithm

when the von-Mises yield criterion is

adopted. In what follows, we first present the

return mapping algorithm to obtain the

plastic multiplier Dl at each increment, the

consistent tangent matrix is then extracted to

achieve the quadratic convergency rate in

Newton-Raphson algorithm.

3.1.  Return Mapping Algorithm 

The trial stress at the beginning of the new

step can be calculated as

(17)

In the above equation it is assumed that the

stress increment is related to strain increment

through the elastic material property matrix.

The new stress state at the end of the

increment is the sum of the stress at the

beginning of the step and the stress

increment, i.e.

(18)

Substituting equations (15) and (17) into

equation (18), we obtain the following

explicit expression

(19)

in which the only unknown parameter is Dl.

If plasticity occurs (i.e.,               ), a

correction for plastic flow must be applied.

To this end the yield condition                       ,

where the subscript n denotes the value of a

quantity after correction for plastic flow, is

developed in a truncated Taylor series around

as [23]
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(20)

where  H is the hardening parameter and can

be defined similar to that of the classic

continuum as                       . Substituting 

jF/js from equation (15) into equation

(20), we obtain an explicit expression for the

plastic multiplier Dl as

(21)

With expression (21) for the magnitude of the

plastic strain increment, the computation for

elasto-plasticity in Cosserat continuum is

completed in analogy to a conventional

plasticity model. The plastic strain increment

in each step can be determined from

equations (15) and (21) and then, the

corrected value of stress can be obtained

from equations (17) and (19). For numerical

calculations the coefficients of P are chosen

as a1=a2=1/4 and a3=1/2 [24].

3.2.  Consistent Tangent Modulus 

In order to achieve the full advantage of

quadratic convergence rate in Newton’s

algorithm, the consistent tangent modulus

needs to be introduced for Cosserat

continuum model. The stress update can be

computed in standard elasto-plasticity by an

integral along a given path from the initial

state to the final state as follows

(22)

where the elasto-plastic tangent modulus is

defined as 

(23)

Algorithmically, the stress update is

calculated as 

(24)

where S is a nonlinear mapping operator

depends on the numerical method of plastic

strain integration within the increment  Dei
defined as

(25)

The consistent (algorithmic) tangent modulus

is defined as [40]

(26)

in which it is in general non-symmetric and

for finite, large steps differs significantly

from Dep. An explicit definition of Depcons
for associated  J2 flow plasticity can be

obtained by differentiating from equation

(19) as

(27)

where

(28)

where    is the so-called pseudo-elastic

stiffness operator. Following the standard

procedure for derivation of Dep, which

employs the consistency condition                   ,

the consistent tangent modulus Depcons can be

extracted as 

(29)

where n=jF/js. From equation (28), it can

be seen that when strain increment is very

small (i.e., at limit DlY0), Depcons turns

into Dep .
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4.  NUMERICAL SIMULATION

RESULTS 

In order to demonstrate the effective

performance of proposed computational

algorithm, the implementation of Cosserat

continuum model on the plastic flow in

localization analysis is illustrated. The

Cosserat finite element analysis is carried out

for 20-noded hexahedral elements with 6

degrees-of-freedom at each node, including

three rotational and three translational

degrees-of-freedom. A strip in tensile with

strain softening Cosserat plasticity is

analyzed numerically, as shown in Figure 2.

Three-dimensional numerical analysis is

compared with its two-dimensional model to

verify the correctness of proposed model and

the capability of the algorithm in capturing

shear band localization. The effect of

Cosserat theory on regularization of the

results is illustrated by performing a

comparison with classical analysis. The

effect of internal length parameters in

Cosserat continuum is shown on the shear

band width and corresponding load-

displacement curves.

A strip with 60 mm width, 120 mm height

and 22.5 mm depth is subjected to a uniform

displacement in x–direction. The strip is

restrained in x–direction at the left hand side

and y–direction on the upper edge of fixed

support. All external nodes in x–y planes are

restrained in z–direction (Figure 2). The

rotational degrees of freedom are free for all

nodal points. The 3D numerical simulation is

performed by using 20 noded-hexahedral

elements. The material parameters chosen are

as follows; E=4000 N/mm2, v=0.49 ,

Gc=2000 N/mm2, sY=100 N/mm2, and

the plastic softening modulus

H=-120 N/mm2. The internal length

parameter varies from 1mm to 3mm . A weak

zone is assumed on the upper left edge of the

plate to trigger the localization mechanism.

The material parameters of soft zone are

similar to strip except sY=98 N/mm2  and

v=0.30 .

In Figure 3, the deformed meshes of 3D

(16x8x3) and 2D (16x8) models are shown

for both the Cosserat and classical theories at

u=4.2 mm. The 2D and 3D Cosserat analyses

are performed at different internal length

183International Journal of Civil Engineerng. Vol. 4 , No. 3, September 2006
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Figure 3. The deformed meshes of 3D (16G8G3) and 2D (16G8) models for a strip in tensile using Cosserat theory at
u=4.2mm ; a) lb=1mm , lt =0  b) lb=2mm , lt =0  , c) lb=3mm , lt =0  , d) The classical theory

(a)

(b)

(c)

(d)

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

8-
15

 ]
 

                             9 / 16

https://www.iust.ac.ir/ijce/article-1-341-en.html


185International Journal of Civil Engineerng. Vol. 4 , No. 3, September 2006

0.20
0.19
0.17
0.16
0.14
0.13
0.11
0.10
0.09
0.07
0.06
0.04
0.03
0.01
0.00

0.20
0.19
0.17
0.16
0.14
0.13
0.11
0.10
0.09
0.07
0.06
0.04
0.03
0.01
0.00

0.20
0.19
0.17
0.16
0.14
0.13
0.11
0.10
0.09
0.07
0.06
0.04
0.03
0.01
0.00

0.27
0.25
0.23
0.21
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.21
0.20
0.18
0.17
0.15
0.14
0.12
0.11
0.09
0.07
0.06
0.04
0.03
0.01
0.00

0.21
0.20
0.18
0.17
0.15
0.14
0.12
0.11
0.09
0.07
0.06
0.04
0.03
0.01
0.00

0.21
0.20
0.18
0.17
0.15
0.14
0.12
0.11
0.09
0.07
0.06
0.04
0.03
0.01
0.00

(a)

(b)

(c)

(d)

Figure 4.The effective plastic strain contours of 3D (16x8x3) and 2D (16x8) models for a strip in tensile using Cosserat
theory at  u=4.2mm ; a) lb=1mm , lt =0  b) lb=2mm , lt =0  , c) lb=3mm , lt =0  d) The classical theory
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Figure 5.The load–displacement curves for a strip in tensile using 3D (16x8x3) and 2D (16x8) models; A comparison
between the Cosserat and classical continuum analyses

Figure 6.The deformed meshes of 3D (24x12x3) analyses for a strip in tensile using Cosserat theory at  u=4.2mm ; a)
lb=1mm , lt =0  b) lb=2mm , lt =0  , c) lb=3mm , lt =0 d) The classical theory

(a)

(c)

(b)

(d)

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

8-
15

 ]
 

                            11 / 16

https://www.iust.ac.ir/ijce/article-1-341-en.html


187International Journal of Civil Engineerng. Vol. 4 , No. 3, September 2006

0.23
0.21
0.19
0.18
0.16
0.15
0.13
0.11
0.10
0.08
0.06
0.05
0.03
0.02
0.00

0.23
0.21
0.19
0.18
0.16
0.15
0.13
0.11
0.10
0.08
0.06
0.05
0.03
0.02
0.00

0.23
0.21
0.19
0.18
0.16
0.15
0.13
0.11
0.10
0.08
0.06
0.05
0.03
0.02
0.00

0.51
0.47
0.44
0.40
0.36
0.33
0.29
0.26
0.22
0.18
0.15
0.11
0.07
0.04
0.00

Figure 7.The effective plastic strain contours of 3D (24x12x3) analyses for a strip in tensile using Cosserat theory at
u=4.2mm a)  lb=1mm , lt =0  b) lb=2mm , lt =0  , c) lb=3mm , lt =0 d) The classical theory
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Figure 8.The load–displacement curves for a strip in tensile using 3D (24x12x3) model; A comparison between the Cosserat
analysis with different internal lengths and classical theory
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parameters of llb=1,2,3 mm and llt=0.

Obviously, the Cosserat analyses regularize

the localization zone while the classical

solution shows a sudden jump on the edge of

localized region. In Figure 4, the effective

plastic strain contours are presented for both

3D and 2D models, which can be compared

with classical theory. The 3D effective plastic

strain contours are almost identical with

those obtained from 2D simulation results.

The effect of internal length parameter in

Cosserat theory can be clearly observed on

the shear band width. As can be seen, by

increasing the internal length, the shear band

width becomes wider in localized zone. In

this figure, a non-smooth shear band

localization is evident in the effective plastic

strain contour of classical theory. The

variations of predicted reaction with

displacement are plotted in Figure 5 for 3D

and 2D models using Cosserat theory. The

2D Cosserat results can be compared with

those reported by de Borst in reference [24].

As can be seen from this figure, with

reduction of internal length parameter the

load-displacement curve converges to the

classical solution, in which for zero value of

internal length parameter the classical result

has been achieved.

In order to investigate the accuracy of

numerical simulation results, a mesh of

24x12x3 hexahedral elements is employed

for the proposed strip problem. Figure 6

presents the deformed meshes at different

internal length parameters in Cosserat theory

and that obtained from classical theory. The

mesh dependency is obvious in classical

theory while the Cosserat theory preserves a

smooth behavior in deformed shape of

different internal lengths. For classical

solution, the localized band width is much

smaller than previous one obtained from

coarse mesh (Figure 3) and the mesh

distortion can be observed. In Figure 7, the

effective plastic strain contours are shown for

both classical and Cosserat theories. In

Cosserat theory, the maximum values of

effective plastic strain are similar to those

obtained from coarse mesh in Figure 4, while

for classical solution its maximum value is

almost twice the coarse mesh. In Figure 8,

the load–displacement curves are plotted for

both techniques. As can be expected, by

reducing the value of internal length

parameter to zero the Cosserat theory

converges to classical theory. In order to
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Figure 9.The load–displacement curves for a strip in tensile using 3D Cosserat analysis; A comparison between two
different meshes
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demonstrate the mesh objectivity in Cosserat

theory, the variations with displacement of

reaction force are presented in Figure 9 for

the coarse and fine meshes. Remarkable

agreement can be observed between two

different meshes. 

5.  CONCLUSION 

In the present paper, the Cosserat finite

element analysis was presented for the

history-dependent material of elasto-

plasticity with special reference to strain

localization in 3D problems. The governing

equations were regularized by adding

rotational degrees-of-freedom to the

conventional degrees-of-freedom in Cosserat

continuum theory. The fundamental

equations of Cosserat elasto-plasticity was

presented in three-dimensional framework,

including: the kinematic relation, stress-

strain relationship, yield criterion, flow rule,

hardening rule and consistent tangent matrix.

The internal length parameters were

introduced in the elasto-plastic constitutive

matrix to control the shear bandwidth. The

capability of computational algorithm was

demonstrated through the numerical analysis

of a 3D strip in tensile. The Cosserat finite

element analysis was carried out for 20-

noded hexahedral elements with 6 degrees-

of-freedom at each node, including three

rotational and three translational degrees-of-

freedom. A comparison was performed

between the classical and Cosserat theories

and the effect of internal length parameter

was demonstrated. The existence of mesh

dependency and instability has been shown

in classical continuum theory. Clearly, a

finite shear bandwidth is achieved and the

load-displacement curves are uniformly

converged upon different mesh sizes.
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